China high quality OEM Machinery Manufacturing Infraded Night Vision Products CHINAMFG Injection Molding

Product Description

OEM Machinery Manufacturing Infraded Night Vision Products CHINAMFG Injection Molding

 

Product Description

Product Name: OEM Machinery Manufacturing Infraded Night Vision Products CHINAMFG Injection Molding
Product No.: SP50-0003
Shaping Mode: Plastic injection molding
Product Material: PEI
Product Feature: Ultra-precision dimensions, high temperature resistance, flame retardant, high hardness
Product Used for: Infrared Night Vision, thermal scope camera
Product Application: Medical, Electronics
Product Type: Plastic injection molding making part, injection molding machinery
Product Color: Black, or customised as clients’ requirements
Product Accuracy: 0.02mm
Product Mould Life: 100 thousand~300 thousand times
Mould Warranty Period: 1 year or 100 thousand shots(in this period, if the mold have any problem, we will offer the parts or service by free, but it does’t  include the problems caused by wrong operation)
Ejection system: Motor/hydraulic cylinder/stripping plate/angle pin, etc….
Cooling system: Water cooling or Beryllium bronze cooling, etc.
Optional plastic materials: ABS, PPS, GPPS, HIPS, AS, MS, PMMA, PC, PA6, PA66, PA+GF, PVC, PP, PE, TPE, TPU, TPR, LCP, PBT, PETG, PC/ABS, POM, PC, PPE, PPO, etc……
Product Mould base: Standard mould base, LKM, HASCO, DME,etc……
Fast mold design: We can be within 1-3 working days after getting customer’s drawings.
Mould testing: All of the moulds can be well tested before the shipments. Videos testing the moulds are available.
Mould Lead time: Plastic moulds: 3- 4 weeks after getting the mould design confirmation.
Product Minimum order: Small orders can be accepted.
Mould making service: OEM/ODM service is available.
Product Packing: Opp bag+Carton outside, or as clients’ requirements
Mould Safe packing: In strong wooden pallets to avoid any damages during long transportation.
Mould HS Code: 848571090
Quality System ISO9001,SGS,TS16949
Specification Depends on clients’ requirements
Origin HangZhou, China

 

Detailed Photos

Injection Molding

product/kGJYmbdwstWx/China-OEM-ODM-High-Precision-Plastic-Injection-Molds-Manufacturing-Custom-Plastic-Mould.html

product/jGhUaOCyLEks/China-Factory-Custom-Design-Plastic-Mould-for-Auto-Parts-Car-Accessory-Brackets.html

product/ufzUCacvJmWk/China-Customized-Designing-Auto-Medical-Toy-Household-Electric-Plastic-Injection-Mould.html

 

product/OxVpfveTfFcN/China-OEM-Plastic-Injection-Molding-Parts-Car-Armrest-Storage-Box.html

product/exXrKOqywscg/China-Auto-Parts-Engine-Spare-Parts-Electronic-Water-Pump-Cover.html

product/GEPpHgkMHdWq/China-Custom-Manufacturing-Molded-Auto-Parts-Turn-Signal-Switch-Lever-Plastic-Injection-Molding.html

Click here to view more plastic moulds>>>

Click here to view more injection molding parts>>>

 

Company Profile

 

SENPO PRECISION Tooling Co., Ltd., Foreign Joint Ventures, was established in 2013. It is located at Building A2, No. 2082 CHINAMFG Rd., CHINAMFG Community, Shajing Blvd., Bao’an, Distr., HangZhou, ZheJiang , China. It focuses on the application and development of engineering plastics and focuses on high-quality engineering plastics precision parts and precision molds R&D, design and manufacturing, with a number of independent intellectual property rights.

The company’s products focus on passenger cars, commercial vehicles, new energy vehicles, high-end kitchen and bathroom appliances and other fields, providing customers with core components with high safety and important functionality. The product series includes automobile engine peripheral parts, automobile transmission system parts, automobile braking system parts, new energy vehicle parts, household water heater functional parts, household water purifier functional parts, precision industrial parts, etc.

In the context of “replacing steel with plastic”, the company aims to provide products with greater use value, is committed to the localization of high-end precision injection molded parts, and has established long-term and stable cooperative relationships with many internationally companies.

The company adheres to the concept of lean manufacturing and carefully manufactures every product.

Senpo Precision Tooling Co., Limited    specializes in the production of custom plastic injection molding. Our high-quality products are perfect for custom plastic parts and can be used for various applications. Trust us for all your custom plastic molding needs.

DEVELOPING HangZhouSTONE & HISTORY
 

*2014    

Founded YAMANAMI, YAMANAMI was the original company name.

*2015    

Invested 2 TOPZEN CNC machines for tooling & machining business.

*2016    

Invested another 2 TOPZEN CNC machines for business increasing.

*2017    

Invested 2 FANUC high speed CNC machines for tooling business.

*2018    

Invested 1 SODICK wire cut machine for precision tooling business.

*2019   

Registered SENPO, specializes in global tooling & engineering services.

*2571    

Invested 1 CROMA CMM measuring machine for precision tooling business.

*2571    

Invested 3 CHINAMFG mirror EDM machines for precision tooling business.

*2571    

Invested 3 new injection molding machines for product production business.

*2571    

Stop investing and focus on current customer services and developing new clients.

**FACTORY EQUIPMENT LIST
 

NAME

BRAND

COUNTRY OF ORIGINAL STROKE PRECISION
CNC    Machine MAKINO F5 Japan 900 * 500 mm 0.0015mm
CNC   Machine FANUC α-T14iFb Japan 600 * 450 mm 0.005mm
CNC   Machine TOPZEN850 ZheJiang 800 * 500 mm 0.01mm
CNC   Machine TOPZEN650 ZheJiang 600 * 500 mm 0.01mm
CNC   Machine TOPZEN1165 ZheJiang 1100 * 650 mm 0.01mm
EDM   Machine MITSUBISHI Japan 400 * 300 mm 0.002mm
EDM   Machine KYOUMEN China 350*250 mm 0.01mm
EDM   Machine TAIYI ZheJiang 650*450 mm 0.01mm
CMM   Measuring Machine HEXAGON Sweden 800 * 600 mm 0.002mm
Project Measuring Machine 3D FAMILY ZheJiang 300*200 mm 0.002mm
Height Measuring Instrument Mitutoyo Japan 350 mm 0.001mm
Wire   Cut   Machine SODICK Japan 400 * 350 mm 0.001mm
Grinding   Machine ELITE Korea 400* 300 mm 0.0005mm
Grinding   Machine PENGJING China 400* 250 mm 0.001mm
Milling    Machine TAIYI ZheJiang 800* 400 mm 0.02mm
Injection   Machine HAITIAN China 250TON NA
Injection   Machine SUMITOMO

Japan

180TON NA

 

Our Services

  • CNC Machining Services
  • Sheet Metal Fabrication
  • 3D Printing Services
  • Plastic Injection Molding
  • 3D ScHangZhou Services
  • 3D Design Services
  • Silicone Rubber Mold Casting Services
  • Other Rapid Prototyping Services

 

Our Advantages

 

Confidentiality
Signed NDA documents to ensure all your information discussed be confidential. We will also train the staff with detailed regulations and not showing the staff full data if not necessary.
Initiative
communication
Through many years cooperation with our partners, we are confident to provide you satisfied quality with a reasonable price. Not only providing satisfied quality and on-time delivery, but we also have a dedicated and initiative staff for every issue happened in the process.
Efficient service For some urgent issues, we provide 7*24 hours for timely feedback.We will reply your mail within 12 hours or earlier since our team members are energetic and all using smartphone devices.Please add our or for better communication.
Advantage in price We are also happy to follow up your other projects which need outsourcing service, what we think is to save your plant visit cost and transportation cost etc. Our team’s goal is to work hard to find out the best price with good quality products for our customers and achieve more trust and confidence on both sides

Senpo Precision Tooling Co., Limited

 

One-Stop Solution for Product Design and Manufacturing

At Senpo Precision Tooling Co., Limited, we offer a comprehensive range of services to meet all your product design and manufacturing needs. Whether you require assistance with product design, prototyping, mold making, injection molding, or assembly, we have got you covered. Our team of professionals is dedicated to providing you with a seamless experience, saving you time and effort on communication.

 

Key Features:

  • Wide Range of Materials: We specialize in working with plastic, silicone, metal, brass, and sheet metal, ensuring that we can cater to diverse project requirements.
  • Professional Engineering Team: Our experienced engineering team closely tracks your project, ensuring that every detail is taken care of and delivering exceptional results.
  • Competitive Pricing: With our extensive knowledge of different processes and intelligent process management, we are able to offer competitive prices without compromising on quality.
  •  

Quality Warranty:

At Senpo Precision Tooling Co., Limited, we stand behind the quality of our products and services. Our commitment to customer satisfaction is reflected in our comprehensive quality warranty:

  1. Lifetime Sales-After Service: We provide lifetime sales-after service for all injection molds, ensuring that any issues or concerns are promptly addressed.
  2. 24-Hour Response: Our dedicated customer support team is available 24/7 to answer any questions or comments you may have.
  3. Mold Steel Lifetime Quality Warranty: Depending on the type of steel used, we offer warranties of up to 100,000 shots or 1,000,000 shots for our molds.
  4. CNC Machining and Prototype: All our products are meticulously CNC machined and prototype according to the provided drawings. We also conduct a 100% size check before shipment to ensure accuracy.
  5. Comprehensive Documentation: Our engineering team provides material certification, dimension reports, checklists for design, and detailed information about the mold shipment.

 

Packaging & Shipping

 

Delivery Time:

– RFQ: 24-48 hours

– Small quantity CNC machined components and prototypes: 3-5 days.

– Injection molds smaller than 450*450mm: 4 weeks.

– Injection molds smaller than 800*800mm: 5-6 weeks.

– Samples: 4-7 days CHINAMFG via DHL, FedEx, ***, etc.

Please note that these delivery times are applicable for Senpo Precision Tooling Co., Limited.

 

Our Services

 

Product Engineerng Services

Mold  Manufacturing  Services

Product Manufacturing Services

1.Plastic & metal product 3D design support,       optimizing.
 

2.Plastic & metal product engineering DFM, solution.
 

3.Plastic & metal prototype manufacturing, testing.

1.Plastic & die casting mold DFM, design, mold flow.

2.Plastic & die casting mold manufacturing.

3.Plastic & die casting mold injection molding.

1.Plastic & metal part secondary process.

2.Plastic & metal part surface treatment.

3.Plastic & metal product assembly.

 

FAQ

Q1: Are you a trading company or manufacturer?
A1: We are a manufacturer. Senpo Precision Tooling Co., Limited was established in 2013 with our own workshop and office.

Q2: Where is your factory located?
A2: Our factory is located in Shajing, HangZhou City, ZheJiang Province, China. It is conveniently situated just 20 minutes away from HangZhou airport by taxi.

Q3: How is the quality control in your factory?
A3: At Senpo Precision Tooling, we believe that “Quality is above everything”. We have a professional team dedicated to controlling the quality of our products. Our QC team performs various procedures, including design optimization control, mould steel hardness inspection, mould assembly inspection, mould trial report and samples inspection, and final inspection for mould and packing before shipment.
 

Q4: If I provide you with a 3D drawing of my product, can you quote the price and make the mould accordingly?
A4: Yes, we can. You can provide us with DWG, DXF, STEP, IGS, and X_T files to get a price quote. Making the mould based on your drawings can save time and money in producing your parts.

 

Q5: What type of plastic material is best for my design/component?
A5: The selection of plastic materials depends on the application of your products. After checking the function of your component, we will provide you with suitable suggestions. We can also make trial moulds with different materials according to your requirements.

 

Q6: What kind of moulds can you make?
A6: At Senpo Precision Tooling, we can make all kinds of plastic injection moulds. Our expertise includes household parts moulds, appliance parts moulds, automotive parts moulds, thin-wall parts moulds, industry parts moulds, and pipe fitting moulds. We customize the plastic injection moulds according to our customers’ requirements.

 

Q7: What are your payment terms?
A7: Our payment terms require a 50% deposit, and the balance will be paid before shipment.

 

Q8: How long does it take to finish a mould?
A8: Most moulds can be finished within 3-4 weeks. However, complex and large moulds may require more time. The delivery time will vary based on your order quantity.

 

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Material: Pei
Application: Medical, Electronics
Precision Tolerance: 0.02mm
Prodcut Feature 1: High Temperature Resistance, Flame Retardant
Product Color: Black, or Customized as Clients′ Requirements
Product Type: Injection Molding Infrared Night Vision Part
Samples:
US$ 20/Piece
1 Piece(Min.Order)

|

Customization:
Available

|

Can you explain the role of temperature and pressure in injection molding quality control?

Temperature and pressure are two critical parameters in injection molding that significantly impact the quality control of the process. Let’s explore their roles in more detail:

Temperature:

The temperature in injection molding plays several important roles in ensuring quality control:

1. Material Flow and Fill:

The temperature of the molten plastic material affects its viscosity, or flowability. Higher temperatures reduce the material’s viscosity, allowing it to flow more easily into the mold cavities during the injection phase. Proper temperature control ensures optimal material flow and fill, preventing issues such as short shots, flow marks, or incomplete part filling. Temperature control also helps ensure consistent material properties and dimensional accuracy in the final parts.

2. Melting and Homogenization:

The temperature must be carefully controlled during the melting process to ensure complete melting and homogenization of the plastic material. Insufficient melting can result in unmelted particles or inconsistent material properties, leading to defects in the molded parts. Proper temperature control during the melting phase ensures uniform melting and mixing of additives, enhancing material homogeneity and the overall quality of the molded parts.

3. Cooling and Solidification:

After the molten plastic is injected into the mold, temperature control is crucial during the cooling and solidification phase. Proper cooling rates and uniform cooling help prevent issues such as warping, shrinkage, or part distortion. Controlling the temperature allows for consistent solidification throughout the part, ensuring dimensional stability and minimizing internal stresses. Temperature control also affects the part’s crystallinity and microstructure, which can impact its mechanical properties.

Pressure:

Pressure control is equally important in achieving quality control in injection molding:

1. Material Packing:

During the packing phase of injection molding, pressure is applied to the molten plastic material to compensate for shrinkage as it cools and solidifies. Proper pressure control ensures that the material is adequately packed into the mold cavities, minimizing voids, sinks, or part deformation. Insufficient packing pressure can lead to incomplete filling and poor part quality, while excessive pressure can cause excessive stress, part distortion, or flash.

2. Gate and Flow Control:

The pressure in injection molding influences the flow behavior of the material through the mold. The pressure at the gate, where the molten plastic enters the mold cavity, needs to be carefully controlled. The gate pressure affects the material’s flow rate, filling pattern, and packing efficiency. Optimal gate pressure ensures uniform flow and fill, preventing issues like flow lines, weld lines, or air traps that can compromise part quality.

3. Ejection and Part Release:

Pressure control is essential during the ejection phase to facilitate the easy removal of the molded part from the mold. Adequate ejection pressure helps overcome any adhesion or friction between the part and the mold surfaces, ensuring smooth and damage-free part release. Improper ejection pressure can result in part sticking, part deformation, or mold damage.

4. Process Monitoring and Feedback:

Monitoring and controlling the temperature and pressure parameters in real-time are crucial for quality control. Advanced injection molding machines are equipped with sensors and control systems that continuously monitor temperature and pressure. These systems provide feedback and allow for adjustments during the process to maintain optimum conditions and ensure consistent part quality.

Overall, temperature and pressure control in injection molding are vital for achieving quality control. Proper temperature control ensures optimal material flow, melting, homogenization, cooling, and solidification, while pressure control ensures proper material packing, gate and flow control, ejection, and part release. Monitoring and controlling these parameters throughout the injection molding process contribute to the production of high-quality parts with consistent dimensions, mechanical properties, and surface finish.

Can you describe the various post-molding processes, such as assembly or secondary operations, for injection molded parts?

Post-molding processes play a crucial role in the production of injection molded parts. These processes include assembly and secondary operations that are performed after the initial molding stage. Here’s a detailed explanation of the various post-molding processes for injection molded parts:

1. Assembly:

Assembly involves joining multiple injection molded parts together to create a finished product or sub-assembly. The assembly process can include various techniques such as mechanical fastening (screws, clips, or snaps), adhesive bonding, ultrasonic welding, heat staking, or solvent welding. Assembly ensures that the individual molded parts are securely combined to achieve the desired functionality and structural integrity of the final product.

2. Surface Finishing:

Surface finishing processes are performed to enhance the appearance, texture, and functionality of injection molded parts. Common surface finishing techniques include painting, printing (such as pad printing or screen printing), hot stamping, laser etching, or applying specialized coatings. These processes can add decorative features, branding elements, or improve the surface properties of the parts, such as scratch resistance or UV protection.

3. Machining or Trimming:

In some cases, injection molded parts may require additional machining or trimming to achieve the desired final dimensions or remove excess material. This can involve processes such as CNC milling, drilling, reaming, or turning. Machining or trimming is often necessary when tight tolerances, specific geometries, or critical functional features cannot be achieved solely through the injection molding process.

4. Welding or Joining:

Welding or joining processes are used to fuse or bond injection molded parts together. Common welding techniques for plastic parts include ultrasonic welding, hot plate welding, vibration welding, or laser welding. These processes create strong and reliable joints between the molded parts, ensuring structural integrity and functionality in the final product.

5. Insertion of Inserts:

Insertion involves placing metal or plastic inserts into the mold cavity before the injection molding process. These inserts can provide additional strength, reinforce threaded connections, or serve as mounting points for other components. Inserts can be placed manually or using automated equipment, and they become permanently embedded in the molded parts during the molding process.

6. Overmolding or Two-Shot Molding:

Overmolding or two-shot molding processes allow for the creation of injection molded parts with multiple layers or materials. In overmolding, a second material is molded over a pre-existing substrate, providing enhanced functionality, aesthetics, or grip. Two-shot molding involves injecting two different materials into different sections of the mold to create a single part with multiple colors or materials. These processes enable the integration of multiple materials or components into a single injection molded part.

7. Deflashing or Deburring:

Deflashing or deburring processes involve removing excess flash or burrs that may be present on the molded parts after the injection molding process. Flash refers to the excess material that extends beyond the parting line of the mold, while burrs are small protrusions or rough edges caused by the mold features. Deflashing or deburring ensures that the molded parts have smooth edges and surfaces, improving their appearance, functionality, and safety.

8. Inspection and Quality Control:

Inspection and quality control processes are performed to ensure that the injection molded parts meet the required specifications and quality standards. This can involve visual inspection, dimensional measurement, functional testing, or other specialized testing methods. Inspection and quality control processes help identify any defects, inconsistencies, or deviations that may require rework or rejection of the parts, ensuring that only high-quality parts are used in the final product or assembly.

9. Packaging and Labeling:

Once the post-molding processes are complete, the injection molded parts are typically packaged and labeled for storage, transportation, or distribution. Packaging can include individual part packaging, bulk packaging, or custom packaging based on specific requirements. Labeling may involve adding product identification, barcodes, or instructions for proper handling or usage.

These post-molding processes are vital in achieving the desired functionality, appearance, and quality of injection molded parts. They enable the integration of multiple components, surface finishing, dimensional accuracy, and assembly of the final products or sub-assemblies.

Can you describe the range of materials that can be used for injection molding?

Injection molding offers a wide range of materials that can be used to produce parts with diverse properties and characteristics. The choice of material depends on the specific requirements of the application, including mechanical properties, chemical resistance, thermal stability, transparency, and cost. Here’s a description of the range of materials commonly used for injection molding:

1. Thermoplastics:

Thermoplastics are the most commonly used materials in injection molding due to their versatility, ease of processing, and recyclability. Some commonly used thermoplastics include:

  • Polypropylene (PP): PP is a lightweight and flexible thermoplastic with excellent chemical resistance and low cost. It is widely used in automotive parts, packaging, consumer products, and medical devices.
  • Polyethylene (PE): PE is a versatile thermoplastic with excellent impact strength and chemical resistance. It is used in various applications, including packaging, pipes, automotive components, and toys.
  • Polystyrene (PS): PS is a rigid and transparent thermoplastic with good dimensional stability. It is commonly used in packaging, consumer goods, and disposable products.
  • Polycarbonate (PC): PC is a transparent and impact-resistant thermoplastic with high heat resistance. It finds applications in automotive parts, electronic components, and optical lenses.
  • Acrylonitrile Butadiene Styrene (ABS): ABS is a versatile thermoplastic with a good balance of strength, impact resistance, and heat resistance. It is commonly used in automotive parts, electronic enclosures, and consumer products.
  • Polyvinyl Chloride (PVC): PVC is a durable and flame-resistant thermoplastic with good chemical resistance. It is used in a wide range of applications, including construction, electrical insulation, and medical tubing.
  • Polyethylene Terephthalate (PET): PET is a strong and lightweight thermoplastic with excellent clarity and barrier properties. It is commonly used in packaging, beverage bottles, and textile fibers.

2. Engineering Plastics:

Engineering plastics offer enhanced mechanical properties, heat resistance, and dimensional stability compared to commodity thermoplastics. Some commonly used engineering plastics in injection molding include:

  • Polyamide (PA/Nylon): Nylon is a strong and durable engineering plastic with excellent wear resistance and low friction properties. It is used in automotive components, electrical connectors, and industrial applications.
  • Polycarbonate (PC): PC, mentioned earlier, is also considered an engineering plastic due to its exceptional impact resistance and high-temperature performance.
  • Polyoxymethylene (POM/Acetal): POM is a high-strength engineering plastic with low friction and excellent dimensional stability. It finds applications in gears, bearings, and precision mechanical components.
  • Polyphenylene Sulfide (PPS): PPS is a high-performance engineering plastic with excellent chemical resistance and thermal stability. It is used in electrical and electronic components, automotive parts, and industrial applications.
  • Polyetheretherketone (PEEK): PEEK is a high-performance engineering plastic with exceptional heat resistance, chemical resistance, and mechanical properties. It is commonly used in aerospace, medical, and industrial applications.

3. Thermosetting Plastics:

Thermosetting plastics undergo a chemical crosslinking process during molding, resulting in a rigid and heat-resistant material. Some commonly used thermosetting plastics in injection molding include:

  • Epoxy: Epoxy resins offer excellent chemical resistance and mechanical properties. They are commonly used in electrical components, adhesives, and coatings.
  • Phenolic: Phenolic resins are known for their excellent heat resistance and electrical insulation properties. They find applications in electrical switches, automotive parts, and consumer goods.
  • Urea-formaldehyde (UF) and Melamine-formaldehyde (MF): UF and MF resins are used for molding electrical components, kitchenware, and decorative laminates.

4. Elastomers:

Elastomers, also known as rubber-like materials, are used to produce flexible and elastic parts. They provide excellent resilience, durability, and sealing properties. Some commonly used elastomers in injection molding include:

  • Thermoplastic Elastomers (TPE): TPEs are a class of materials that combine the characteristics of rubber and plastic. They offer flexibility, good compression set, and ease of processing. TPEs find applications in automotive components, consumer products, and medical devices.
  • Silicone: Silicone elastomers provide excellent heat resistance, electrical insulation, and biocompatibility. They are commonly used in medical devices, automotive seals, and household products.
  • Styrene Butadiene Rubber (SBR): SBR is a synthetic elastomer with good abrasion resistance and low-temperature flexibility. It is used in tires, gaskets, and conveyor belts.
  • Ethylene Propylene Diene Monomer (EPDM): EPDM is a durable elastomer with excellent weather resistance and chemical resistance. It finds applications in automotive seals, weatherstripping, and roofing membranes.

5. Composites:

Injection molding can also be used to produce parts made of composite materials, which combine two or more different types of materials to achieve specific properties. Commonly used composite materials in injection molding include:

  • Glass-Fiber Reinforced Plastics (GFRP): GFRP combines glass fibers with thermoplastics or thermosetting resins to enhance mechanical strength, stiffness, and dimensional stability. It is used in automotive components, electrical enclosures, and sporting goods.
  • Carbon-Fiber Reinforced Plastics (CFRP): CFRP combines carbon fibers with thermosetting resins to produce parts with exceptional strength, stiffness, and lightweight properties. It is commonly used in aerospace, automotive, and high-performance sports equipment.
  • Metal-Filled Plastics: Metal-filled plastics incorporate metal particles or fibers into thermoplastics to achieve properties such as conductivity, electromagnetic shielding, or enhanced weight and feel. They are used in electrical connectors, automotive components, and consumer electronics.

These are just a few examples of the materials used in injection molding. There are numerous other specialized materials available, each with its own unique properties, such as flame retardancy, low friction, chemical resistance, or specific certifications for medical or food-contact applications. The selection of the material depends on the desired performance, cost considerations, and regulatory requirements of the specific application.

China high quality OEM Machinery Manufacturing Infraded Night Vision Products CHINAMFG Injection Molding  China high quality OEM Machinery Manufacturing Infraded Night Vision Products CHINAMFG Injection Molding
editor by CX 2024-03-23